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The end-point distribution of self-avoiding walks on a crystal 
lattice 11. Loose-packed lattices 

M G Watts 
Wheatstone Physics Laboratory, King’s College, Strand, London WC2R 2LS, UK 

Received 19 September 1973, in final form 16 November 1973 

Abstract. A study is made of the mean-square lengths of self-avoiding walks on  a number of 
loose-packed lattices. It is found that the even-odd oscillations characteristic of this type of 
lattice may be largely removed by the use of an Euler transformation. From an analysis of the 
transformed series and of other moments from 1 to 10 of the distribution the mean-square 
length indices are estimated as y = 1.500k0.005 in two dimensions and : = 1.20k0.02 in 
three dimensions. These estimates are in good agreement with the exact simple fractions 
3 and 3 favoured by several workers. 

1. Introduction 

Finite self-avoiding walks on lattices have been studied for some years now as a model 
of a single-chain polymer in dilute solution (Orr 1947, Domb 1969). This model provides 
a realistic representation of the excluded volume effect through the restriction that no 
lattice site may be visited more than once in the walk. The excluded volume, which is 
simply the fact that the segments of a polymer all occupy a finite volume, affects the 
average size of a polymer of n bonds. It is the purpose of this paper to investigate this 
effect by examining the average size of self-avoiding walks of n steps. The mean-square 
end-to-end length, p,,, is used as a measure of the average size. 

For unrestricted walks pn is readily shown to be proportional to the number of 
steps. There is good numerical evidence (Domb 1963) to suggest that for self-avoiding 
walks in two or three dimensions pn behaves for large n as 

(1) 

with y greater than 1. The index 7, which measures the expansion of the polymer due 
to  the excluded volume, appears to be a function only of the dimensionality of the lattice 
and not of its precise structure. 

Most estimates for y are close to 1.5 in two dimensions and to  1.2 in three and this 
has led several workers to conjecture that the true values are in fact the simple fractions 
$and $(Domb 1969). In a previous paper (Martin and Watts 1971), which will be referred 
to as I, we extended complete end-point distributions on several two- and three-dimen- 
sional lattices and presented an analysis of the mean-square lengths on the close-packed 
lattices. In the present paper the loose-packed lattices are studied. We show how the 
even-odd oscillations, which are usually present in mean-square length series on this 
type of lattice, may be greatly reduced by means of an Euler transformation. We also 

p n  - constant x ny 
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analyse ather moments of the distribution which, if the distribution approaches a limiting 
shape (Fisher 1966), can also be used to find y. By these means new estimates for y are 
obtained which lend support to the hypothesis that 

d = 2  

d = 3. 

y ={  3 

6 
33 

2. Analysis of mean-square lengths 

We will assume that equation (1) correctly gives the asymptotic behaviour of p ,  and 
further that the convergence to this form is given by 

9( c )  -- 'n+' - I+- I+- .+O(n-2). 
P n  

Evidence for the above is given by Domb (1963) who plots n(pn+ J p n -  1) against n -  ' 
and, for each lattice, this approaches a limiting value with constant slope. If the assump- 
tions of equations (1) and (2)  are correct, the sequence of estimates 

will converge to y with error O(n- '). Setting i = 1 in equation (3) gives the extrapolation 
formula used in I for the close-packed lattices. Setting i = 2 corresponds to extrapolating 
odd and even sequences separately and helps to reduce the oscillations on loose-packed 
lattices. Values of Y , , ~  are given in table 1 for the simple quadratic lattice and in table 2 
for the simple cubic and body-centred cubic lattices. 

The estimates indicate a value for y which is very close to 1.2 for the three-dimensional 
lattices but is somewhat lower than 1.5 for the square lattice. In I from an analysis of 
the triangular lattice we estimated y = 1.488 f 0.002 in two dimensions. Table 1 would 
suggest a value between this and 1.5 but we should also notice that the last few estimates 
on each of the two-dimensional lattices are rising slightly and so the possibility of 
y = 1.5 cannot be ruled out. 

Table 1. Estimates for y on the simple quadratic lattice 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1.4849 
1.4793 
1.4876 
1.4815 
1.4878 
1.4846 
1.4884 
1.4863 
1.4894 

1.4518 
1.4562 
1,4600 
1.4631 
1.4658 
1.468 1 
1.4702 
1.4720 
1.4736 
1.4750 

1.5004 
1.5012 
1.5009 
1,5006 
1.5007 
1.5008 
1.5009 
1.5009 
1.5008 
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Table 2. Estimates for y on the simple cubic and body-centred cubic lattices 

simple cubic lattice body-centred cubic lattice 

n Y d P )  

6 1.2137 
I 1,203 1 
8 1.2038 
9 1.1995 

10 1.2009 
11 1,1979 
12 1.1989 
13 1.1964 
14 - 

Y " J 4  

1.2029 
1.2052 
1.2054 
1.2046 
1.2033 
1,2019 
1.2007 
1.1998 
1.1990 

u,(r) 

1,2338 
1.2087 
1.191 1 
1.1793 
1,1730 
1.1736 
1.1781 
1.1778 

Y J P )  

1.209 1 
1.2026 
1.2033 
1.1993 
1.2001 

Y " , I ( d  

1.2052 
1.2043 
1.2029 
1.2016 
1.2006 
1.1997 

U,(?) 

1.1931 
1.1829 
1.1801 
1.1818 
1.1815 

The technique to be used in the following section identifies - y -  1 as the exponent 
of a singularity in the complex plane. This is the dominant singularity in the generating 
function for mean-square lengths and so defines the circle of convergence. An attempt 
is then made to distort the complex plane in such a manner that other singularities, 
which may be upsetting the smoothness of the estimates for y, are mapped away from the 
circle of convergence. As this is shown to produce far smoother sequences we feel that 
it should form the basis of a reliable method for estimating y .  

3. Use of the Euler transformation 

The generating function for mean-square lengths is defined by 
00 

G(x) = 1 + pnxn 
n =  1 

(4) 

and must have a dominant singularity at x = 1 to produce a series of all positive terms 
but may possess other, weaker, singularities also on the unit circle. In particular there 
are good reasons to expect a singularity at x = -1 (Sykes et a1 1972) which would 
produce the observed even-odd oscillations in pn.  We will proceed as if a singularity at 
x = - 1 does exist and show that an attempt to map this further from the origin almost 
entirely removes the oscillation. 

A transformation is made from the.x plane to a new plane z through the change of 
variable 

This is chosen to map the points x = 0 and x = 1 into z = 0 and z = 1 and to map 
x = - 1 into z = - 5, 5 is real to preserve any symmetry about the real axis. For 
5 > 1 the unit circle, 1x1 = 1, is mapped into a larger circle with centre (1 - {)/2 and radius 
(1 + 5)/2, and this has the effect of moving any singularities originally on the circle of 
convergence, except of course the singularity at x = 1, away from the circle of con- 
vergence. The motion of points originally on the unit circle is shown in figure 1 for 
5 = 1 (identity mapping), 2, 3 and 4. 
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+ - 3  I 

Figure 1. Motion of points originally on the unit circle as 5 takes the values 1 (identity 
mapping), 2. 3 and 4. 

The above transformation will produce a new sequence r ,  which has the same domi- 
nant asymptotic behaviour as p, and is defined through the generating function 

m 

G(x(z)) = 1 + r,z". 
n =  1 

The rransformation was tried using a range of values for 5 and it was found that t = 10 
gave the smoothest results. 

4. Analysis of transformed series 

4.1. Simple quadratic lattice 

The new sequence, r , ,  behaved sufficiently smoothly to enable the estimates ~ , , ~ ( r )  to be 
formed (cf equation (3)). These are given in table 1 and are seen to be varying as n -  
and so the further sequence 

= ( f i +  I)?,+ l , l ( r ) - ~ n , I ( r )  

is also given in table 1. These are constant to within less than 0.1 % over the last nine 
entries and combining them with the estimate in I obtained from an analysis of the 
triangular lattice we obtain 

Y = 1*500+0.005 

in two dimensions. 

4.2. Three-dimensional lattices 

The sequences ~ , , ~ ( r )  are given in table 2 for the simple cubic and body-centred cubic 
lattices. These are nearly constant and are close to 1.2. However, the last few terms in 
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each of these two sequences are decreasing approximately as n-  ‘ I 2  and this suggests 
forming the further sequences 

(n+ 1 ) 1 ’ 2 y n +  1,1(r)-  n1’2yn,1(r) 
(n  + I)’/’ - nl’* u,(r) = 

which are also given in table 2. On this evidence we would estimate y as 1.18 f 0.02. This 
value is somewhat lower than the value of 1.2 which is often quoted and we feel that the 
linearity with n- ‘ I 2  may in fact have been misleading. Further evidence for adopting 
an index of 1.2 is obtained by examining other moments of the distribution. 

5. Other moments of the distribution 

If the end-point distribution for self-avoiding walks approaches a limiting shape then it 
is easy to show that, for large n, the Ith moment ofthe distribution is related to the second 
moment, or mean-square length, through 

(rf)  - constant x 

Hence if the assumption of equation (1) is correct the lth moment will behave for large 
n as 

(r’ , )  - constant x nyt 

y1 = ) l y .  

with 

Estimates for y I  have been obtained for 1 = 1,2,. . ., 10 by forming the sequences 
~ ~ , ~ ( ( r ’ , ) )  for each of the lattices (Watts 1972). Only the estimates are given (table 3) as 
the sequences would require a great deal of space. The y l  are clearly linear with 1 and 
suggest 

1.500 0.01, d = 2  
1.200 f 0.01 5 ,  d = 3. 

Table 3. Estimates for y I  for 1 = 1 through 10 

Y /  
1 

SQ sc BCC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.748 * 0.01 
1.495 i 0.0 1 
2.250f0.02 
3.000 k0.02 
3.750 i 0 . 0 2  
4.500 k 0.03 
5.240 + 0.03 
6.01 0 * 0.03 
6.740 k 0.04 
7.520 k0.04 

0,595 kO.01 
1.1 90 i 0.01 
1.790 f 0.02 
2.395 k 0.02 
3.000 0.03 
3.600 k 0.03 
4.200 f 0.05 
4.820 k 0.05 
5.400 If: 0.05 
6.050 0.05 

(r.600 f 0.01 
1~200*0~01 
1.790 k0.02 
2.400 f 0.03 
2.980 + 0.05 
3,600 + 0.05 
4.240 k 0.05 
4.850 k0.07 
5.450 k 0.07 
6.000 i 0.10 
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6. Conclusions 

By use of the Euler transformation of equation (5) most of the even-odd oscillation has 
been removed from the mean-square length sequences on the loose-packed lattices. 
Combining estimates for y obtained from the transformed sequences with those from 
an analysis of other moments, and the results in I from a study of the close-packed 
lattices, we obtain 

1.500 & 0.005, d = 2  

1.20 * 0.02, 
Y = {  d = 3. 

These provide further support for the conjecture that y is given exactly in two and three 
dimensions by the simple fractions $ and 

I t  is possible that the initially low estimate of y for the three-dimensional lattices is 
due to further irregular behaviour near the origin of the walk. Using higher moments 
directs attention towards the edge of the distribution. One would expect the immediate 
vicinity of the origin to have less effect on the behaviour in two dimensions than in three 
and this may explain why we were able to form considerably closer estimates for y in 
two dimensions than in three. 

An analogy with the Ising model suggests that the close-packed lattices will not 
possess a singularity at x = - 1 in the corresponding generating function, and so would 
not be expected to benefit from the Euler transformation. This is indeed found to be 
the case. Application of the substitution (5) to the close-packed sequences produces no 
noticeable improvement. 

respectively. 
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